51 research outputs found

    Morphing Planar Graph Drawings Optimally

    Full text link
    We provide an algorithm for computing a planar morph between any two planar straight-line drawings of any nn-vertex plane graph in O(n)O(n) morphing steps, thus improving upon the previously best known O(n2)O(n^2) upper bound. Further, we prove that our algorithm is optimal, that is, we show that there exist two planar straight-line drawings Γs\Gamma_s and Γt\Gamma_t of an nn-vertex plane graph GG such that any planar morph between Γs\Gamma_s and Γt\Gamma_t requires Ω(n)\Omega(n) morphing steps

    Morphing Schnyder drawings of planar triangulations

    Full text link
    We consider the problem of morphing between two planar drawings of the same triangulated graph, maintaining straight-line planarity. A paper in SODA 2013 gave a morph that consists of O(n2)O(n^2) steps where each step is a linear morph that moves each of the nn vertices in a straight line at uniform speed. However, their method imitates edge contractions so the grid size of the intermediate drawings is not bounded and the morphs are not good for visualization purposes. Using Schnyder embeddings, we are able to morph in O(n2)O(n^2) linear morphing steps and improve the grid size to O(n)×O(n)O(n)\times O(n) for a significant class of drawings of triangulations, namely the class of weighted Schnyder drawings. The morphs are visually attractive. Our method involves implementing the basic "flip" operations of Schnyder woods as linear morphs.Comment: 23 pages, 8 figure

    Variational tetrahedral meshing

    Get PDF
    In this paper, a novel Delaunay-based variational approach to isotropic tetrahedral meshing is presented. To achieve both robustness and efficiency, we minimize a simple mesh-dependent energy through global updates of both vertex positions and connectivity. As this energy is known to be the ∠1 distance between an isotropic quadratic function and its linear interpolation on the mesh, our minimization procedure generates well-shaped tetrahedra. Mesh design is controlled through a gradation smoothness parameter and selection of the desired number of vertices. We provide the foundations of our approach by explaining both the underlying variational principle and its geometric interpretation. We demonstrate the quality of the resulting meshes through a series of examples
    • 

    corecore